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ABSTRACT
For a class of functions of several variables, which contains the
continuous functions, we show that there exists a sum of functions of one
variable that minimizes the distance from the given function to the space
of such sums. For functions of two variables we show that such a minimiz-

ing sum may be constructed by an iterative scheme.
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SIGNIFICANCE AND EXPLANATION
Often it is desirable to approximate a given function as closely as
possible by a member of a class of functions that are, in some sense, simpler
than the original function.
In this paper we consider the approximation of a function of several “
variables by sums of functions of one variable relative to the supremum norm.
It is not obvious that a best such approximation exists. We prove that such
an approximation does, in fact, exist if the domain of the function to be
approximated is a rectangle in a generalized sense, and if the function is in
a certain class which includes the continuous functions. Also, if we
consider functions of two variables, we show that a best such approximation 1

may be found by an iterative method.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




A NOTE ON THE APPROXIMATION OF FUNCTIONS OF SEVERAL VARIABLES
BY SUMS OF FUNCTIONS OF ONE VARIABLE

C. T. Kelley

I. Introduction

m
Let {‘21}1_1 be compact subsets of the reals. Let @ =@, x @, x *** x -

Let L_(R2) be the Banach space of essentially bounded real-valued functions on
with the supremum norm. Let S(f2) denote the closed subspace of L_(n) consisting

m
of sums of the form ) f ., with f
i=1

Let K(R) be the closure of all finite sums of the form

i’ i e x._(ni).

M m
X ay Z VU. where ij € x,.(nj) for 1 < j <m. K(R) is a closed subalgebra

k=1 =1
of L.(m: K(R) contains the continuous functions on §; S(Q) C K(Q). 1In fact,

K(Q) is the smallest subalgebra of L_(R) containing S(R). For ke L _(R) we

define a functional u(k) by
(1.1) u(k) = inf |x - £|| .
fes(q)

In (1], Diliberto and Straus considered the problem of finding a sequence
{£ } C s so that lim||x - fnll = u(k). They were able to do this and for
continuous k, their ::;uence possessed a convergent subsequence. Hence, for continuous
k, the infimum in (1.1) is attained. The purpose of this note is to show that the
infimum in (1.1) is attained for all k ¢ K(R), and that for m = 2, the iteration
scheme of Diliberto and Straus converges for all k ¢ K(R). These results partially

answer questions raised in [1].

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the
National Science Foundation under Grant No. MCS75-17385 AOl.




II.
Por ke L (@) and 1<3<m define H (k)€ I_(R) by,

(2.1) By (K) (xy) = -;- (ess sup k(x) + ess inf k(x)), a.e. x, .

x.eQ x.eR 3

L i e §

iy i%y
The sequence {!n} of Diliberto and Straus is defined as follows. Let {kn) be given by
(2.1) ko =k ,

kl -k-lll(k) ']

k

g k - lll(k) - ﬂz(k - Hl(k)) '

kw-g r-l-nr(klpﬂ'-l) for 1<r<m.
We define f Dby:

(2.2) fn =k - kn .

The following theorem is due to Diliberto and Straus.
Theorem (2.1). For ke L_(R), let L be given by (2.1). Then

lim lenll = lim ||k - :nll = u(k) .
el e

Moreover, for n> 1, |k |l < Ilx _ |l . and hence
e Nl < 2lixll -

We list some obvious properties of the functions ui(k) in the following lemma.

iR
Lesma (2.1). Let k L_(R), let ¢ ¢ L (R,), :ndlet (e[} _, be finitely

many disjoint measurable sets in @, such that @, = U ni. Let x ; denote the
r=1 e
i R R
(=
characteristic function of E_. Let (u")"t_l be real, and let (p.}._o L_ ()
be independent of x - Then,
-2e
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e —

(a) Hi(k +e) =H (k) + L
(b) “k = Hi(k) " & "k” '
(e) "1“’1"‘) 'viﬂi(k) ’
] T x|l
(@) H a_x P ~p.| = x .H a - P .
i r=) s=) ‘S gt S 0 Sl E1. i ol rsPs o
) 4
m
For f e S(2), we may write f = Z ¥y with 0, L_(ﬂi). This representation
i=1
m
of f is unique in the sense that if f = 2 faim z *i' then there are constants
2 i=1 i=l
8,, so that ): 8, =0, and ¥, + 68 =9 . Nowlet fe S(@) and let
i=1 X :
m m E

£= 121 95 9 € L Q). For ke L () define O (f) = 1-2-1 Vi, where ¥, ¢ L))
is given by

iil lil
(2.3) ¥, =H (k - v, - v.) .

;. * §=1 3 =i+l i

m
Note that each individual ¥ i depends on the representation f = X ("] § However,
i=1

n
Qk(f) does not depend on the representation of f. Indeed if f = Z Vo 61'
i=1

where the 61'3 are constants such that Z Gi =0, let wi be defined by (2.3) with

m m m

¢, Teplaced by ¥, +4,. Wehave p =H k- ] W, +8)) =H k- ] ¢) =] §
i=2 i=2 i=2

) m

=¥, +8. Hence ¥, =y, -8 - izs 8§, =¥, +6,. Contiming in this way we obtain

" m . m

. =%, +8,, forall i, andhence ) ¥, = ) ¥.. Note that Q is continuous

i i i i=1 i i=1 i

as a map on S(Q).

For ke L_(Q) let £n be given by (2.2), then for p > 1

(2.4) e Qﬁ(o) i

Also by Theorem (2.1) for any ke L_(?) and fe S(Q) we have [k - Q, (f) I < JIx-€|.
Hence for each k, Qk maps bounded sets in S(Q) to bounded sets in S(Q).
Theorem (2.2). Let ke K(R). Q  is a compact map on S(%). Hence {s;:,‘:(o)};_1

has a convergent subsequence and the infimum in (1.1) is attained.

~

3=




Proof. We give the proof for m = 2. The proof for arbitrary m is similar.

Note first that for j = 1,2 and kl,kz € L (2, we have
(2.5) -:xlllj(kl) (x;) = Hy(k)) (xj)l < i, - x,ll -
3

If f(xl.xz) -vl(xl) + vz(xz), then
(2.6) Qk(t) = lil(k - vz) + !lz(k - Hl(k - vz)) .

Hence, for any f e S(Q), "1"‘2 € L.(Q),

(2.7 "Q"xm - °x2“’ I < 3lix, - x|l -

let €>0. As k€ K(), we may find finitely many disjoint measurable sets
R 2

iR i R
{Er)r-l in @, such that z‘--Jl E = 2,, and real numbers {c"}r,._l. so that
I lf |
(2.8) k - a_x .x |l <es3.
- rs El. s
2
i - ®
Now let k = ): G_ X X o« For £=¢ +¢_e€ s(Q), we have, by Lemma (2.1), that
rs” 1" 2 1 2
r,s=1 Br B-

R R R R . )
g = 1 x H)1] °‘rs"32"2 + 1 ox 8l °st1'H1(k"'2)J e

r=]l E s=1 s=1 E r=]1 E
r - r r
R
J As x , and ¢, are independent of X 0 Hy Z a X 5 = ¥,| is constant for each r.
| 3 E. s=] Es
R A
Similarly l‘l2 2 a.gX 3 Hl(k - "2) is constant. Hence QI'E has finite dimensional
r=1 E
r
range.
We apply (2.7) twice to obtain
(2.9) oyt - gzl < 3llx- k|| <e.

Hence Qk is the uniform limit of maps on S(R) which have finite dimensional
range. This ml.‘ul the proof.

We note that Theorem (2.2) is in a sense a converse of a theorem in [2]. Golomb
showed, in a general Banach space setting, that if one assumes that the minimum in

(1.1) is attained, then Theorem (2.1) holds.

-§-




The reader should note that if k is continuous on R, so is Qp (0) for each p > 1.

Hence if k is continuous the infimum in (1.1) is attained at a continuous f e S(Q).
In order to prove the final result we require the following theorem of Diliberto

and Straus.

Theorem (2.3). Let m =2, ke K(R). Let kn be given by (2.1), and let k

_— *

be any limit point of the sequence {kn}:_l. We have
Hl(k) (xl) =0, Hz(k) (x,) = 0 for a.e. (xl,xz) .

Theorem (2.4). The sequence {kn}, and hence the sequence {f }, converges
in L_(Q).

Proof. Let k, be any limit point of the sequence {k2n}:-1' Write

= R, (n) (n)
k =k, + e te, with Lk Lw(,ni)‘ Then for n > 2 we have kon k, + Uiy
and

(n) (n-1)
(2.10) N Hl(k +tY, ) .
(n) (n)
v, ==HE(kty ) .

As nl(k) = Hz(k) =0 a.e. we have, for n > 2

(2.11) ~ess inf 91" (x,) < ess sup ¢\ (x)) < -ess inf 0"V ix)) ,
xzenz xfgl "2’“2
ess sup v;") (x,) < -ess inf v{n) (xl) < ess sup w;““l) (x;) .
xlcal *1‘“1 xzeﬂz
Now there is, by assumption, a subsequence {kznj};-l of (kzn};:_1 which
(n,) n;)
converges uniformly to k,. This means 1lim ||v1 3 + ’2 3 || = 0. This in turn implies
b ol ;
that there is a real number c, so that
("j) (“j)
(2.12) lim ’ = c = =lim v, 5
b Ead e

Now choose ¢ > 0. There is jo so that j;jo implies that

(n’) (n,)
(2.13) llv1 - c|l < e/2, ll'z +cfl <er2.




But (2.11) implies that, for all k > 0, and a.e. (xl,xz),
{(n j°+k)
(2.14) c - €/2 :’1 (xl) <c+e€/2,
. |
_ (nj°+k) A
: - -¢e/220, (x) S -c+¢€/2 . 5
|
Hence for all n > n,,, Wwe have 8 |
{
(2.15) el + o) <e. i
1 2 -
Hence limk, =k,. As lim|lx, -k |l = im |8 x, )] =0, 1im k = k,. This
S 2n — 2n 2n+l e 1 2n e 2n+l !
completes the proof.
We note that these results generalize directly to the case where each ni is a
compact Hausdorff space endowed with a positive, regular Borel measure | i’ and @
is given the measure Y x "2 X eece X L The functions k, Hi(k)’ and f may be
allowed to have values in »if supremums and infimums are understood to be taken
cciponentvin.
i Finally, the author would like to thank Professor Michael Golomb of MRC and
‘ Purdue University, Dr. Dennis Pence of MRC, and Professor M. G. Crandall of MRC and
the University of Wisconsin for helpful discussions regarding this work. )
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